Bio-functionalized magnetic nanoparticles for the immunoassay of fetal fibronectin: a feasibility study for the prediction of preterm birth
نویسندگان
چکیده
Preterm birth is an important cause of perinatal morbidity and mortality. Various biomarkers in cervicovaginal secretions related to preterm birth have been investigated, of which foetal fibronectin (fFN) shows the greatest potential because of its high negative predictive value. The immunomagnetic reduction (IMR) assay has emerged as a novel quantitative method to detect biomarkers. In this prospective case-control study, we analysed 33 samples of cervicovaginal secretions from pregnant women between 22 and 34 weeks of gestation at high risk of preterm birth. Seventeen samples were from women with term deliveries and 16 from those with preterm deliveries. The fFN concentration in each sample was measured using both an IMR assay and enzyme-linked immunosorbent assay (ELISA). The low detection limits of the IMR assay and ELISA were 0.0001 ng/mL and 0.789 ng/mL, respectively. The sensitivity and specificity of the IMR assay were 0.833 and 0.944, respectively, compared to 0.583 and 0.611 by ELISA. Our results suggest that measuring the concentration of fFN with the IMR assay is a good alternative method to accurately predict the risk of preterm birth.
منابع مشابه
Effect of Magnetic Fields during Pregnancy on Fetal Growth and Preterm Labor: A Review Article
Background Low birth weight is one of the most important health indicators in evaluating pregnancy care worldwide. We aimed to evaluate the effect of cell phones used in pregnancy on fetal growth and preterm labor. Materials and Methods The search process included screening the rel...
متن کاملAmino Functionalized Silica Coated Fe3O4 Magnetic Nanoparticles as a Novel Adsorbent for Removal of Pb2+ and Cd2+
The present study synthesizes a novel adsorbent by coating Fe3O4 magnetic nanoparticles with amino functionalized mesoporous silica. The FTIR spectrums indicate that silica has been successfully coated on the surface of Fe3O4 and 3-aminopropyl tri methoxysilane compound have been grafted to the surface of silica-coated Fe3O4. The XRD analysis shows the presence of magnetite phase with cubic spi...
متن کاملHighly Sensitive FRET-Based Fluorescence Immunoassay for Detecting of Aflatoxin B1 Using Magnetic/Silica Core-Shell as a Signal Intensifier
Background: Recently, some new nanobiosensors using different nanoparticles or microarray systems for detection of mycotoxins have been designed . However, rapid, sensitive and early detection of aflatoxicosis would be very helpful to distinguish high-risk persons. Objectives: We report a highly sensitive competitive immunoassay using magnetic/silica core shell as a signal intensifier for the d...
متن کاملDevelopment of antibody functionalized magnetic nanoparticles for the immunoassay of carcinoembryonic antigen: a feasibility study for clinical use
BACKGROUND Magnetic nanoparticles functionalized antibodies are used for in-vitro assays on bio-markers. This work demonstrates the synthesis of high-quality magnetic nanoparticles coated with antibodies against carcinoembryonic antigen (CEA). Various characterizations, such as particle size, particle suspension, bio-activity and the stability of bio-magnetic nanoparticles suspended in liquid, ...
متن کاملAmino Functionalized Silica Coated Fe3O4 Magnetic Nanoparticles as a Novel Adsorbent for Removal of Pb2+ and Cd2+
The present study synthesizes a novel adsorbent by coating Fe3O4 magnetic nanoparticles with amino functionalized mesoporous silica. The FTIR spectrums indicate that silica has been successfully coated on the surface of Fe3O4 and 3-aminopropyl tri methoxysilane compound have been grafted to the surface of silica-coated Fe3O4. The XRD analysis shows the presence of magnetite phase with cubic spi...
متن کامل